
Reflection and Attributes in C#: Understanding the

Role and Usage
Nagib Sabbag Filho
FIAP (Faculty of Informatics and Administration Paulista) Avenida Paulista, 1106 - 7º andar - Bela Vista, São Paulo, Brazil.

e-mail: profnagib.filho@fiap.com.br

PermaLink: https://leaders.tec.br/article/413879

ago 05 2024

Abstract:

Reflection and attributes are essential in the development of applications in C#, allowing for more flexible

and dynamic code.

Key words:

reflection, c#, attributes, reflection in c#, custom attributes, software design, dynamic code.

Introduction to the Concept of Reflection and Attributes in C#

In C# programming, reflection and attributes play a fundamental role in manipulating and accessing type metadata at

runtime. In this article, we will explore what reflection and attributes are, how they can be used, and what their role is

in the development of applications in C#.

What is Reflection in C#?

Reflection is the ability of a program to examine and manipulate its own structure at runtime. With reflection, it is

possible to obtain information about data types, methods, properties, and other elements of a program without

knowing them at compile time. This allows for the creation of more dynamic and generic code; however, it is important

to emphasize that excessive use of reflection can impact application performance.

The Role of Attributes in C#

Attributes are metadata that can be applied to elements of the source code, such as classes, methods, properties,

and parameters. They provide additional information about these elements and can be accessed at runtime through

reflection. Attributes are widely used in C# to add extra functionalities, such as serialization, validation, access control,

and logging.

Below is an example of creating a custom attribute. For this, inheritance from "Attribute" was used.

public class TestAttribute : Attribute { }

Creating an Example Class to Use the New Attribute

To understand this practically and easily, the next step is to create a class to use the new attribute we created.

[TestAttribute]

public class TestClass { }

Using Reflection to Return the Class Name

Using a console project, we will create code to return the names of classes that have the "TestAttribute".

using System;

Leaders.Tec.Br Volume 1, Number 5

1

https://leaders.tec.br

using System.Linq;

using System.Reflection;

class TestClassConsole

{

 static void Main()

 {

 var tests =

 from t in Assembly.GetExecutingAssembly().GetTypes()

 where t.GetCustomAttributes(false).Any(a => a is TestAttribute)

 select t;

 foreach(Type t in tests)

 Console.WriteLine(t.Name);

 }

}

Result of the Above Code

Below is a demonstration of how it would appear in the Console:

TestClass

The Link Between Attributes and Reflection

The relationship between attributes and reflection is extremely important in C#. Through reflection, it is possible to

access the attributes applied to code elements at runtime. This allows developers to create functionalities based on

the metadata provided by attributes. For example, a validation framework can use reflection to read validation

attributes on a class and apply the corresponding rules to the data. Similarly, an Object-Relational Mapping (ORM)

mechanism can use reflection to read attributes that define the mapping of class properties to database columns.

More Examples of Using Attributes in C#

A practical example of using attributes in C# is creating an Object-Relational Mapping (ORM) system to persist objects

in a database. With the use of custom attributes, it is possible to map class properties to table columns, facilitating the

manipulation of data in a generic way.

[Table("Customers")]

public class Customer

{

 [Column("Id")]

 public int Id { get; set; }

 [Column("Name")]

 public string Name { get; set; }

 [Column("Email")]

 public string Email { get; set; }

}

Additionally, attributes are often used in frameworks and libraries to implement advanced functionalities, such as

dependency injection, URL routing, and input data validation.

Other Examples of Reflection in C#

Let’s see a practical example of how reflection can be used to obtain information about the methods of a class:

Leaders.Tec.Br Volume 1, Number 5

2

https://leaders.tec.br

using System;

using System.Reflection;

public class ReflectionExample

{

 public void Method1() { }

 public void Method2(int param) { }

}

class Program

{

 static void Main(string[] args)

 {

 Type type = typeof(ReflectionExample);

 MethodInfo[] methods = type.GetMethods(BindingFlags.Public |

BindingFlags.Instance);

 foreach (MethodInfo method in methods)

 {

 Console.WriteLine("Method Name: " + method.Name);

 ParameterInfo[] parameters = method.GetParameters();

 foreach (ParameterInfo parameter in parameters)

 {

 Console.WriteLine(" Parameter: " + parameter.Name + " Type: " +

parameter.ParameterType);

 }

 }

 }

}

In this example, we use the Type class and the GetMethods method to obtain information about the public methods of

the ReflectionExample class. We then iterate over the methods and their parameters, displaying their information in

the console.

Other Possibilities of Custom Attributes

In addition to predefined attributes, we can also create our own custom attributes (as seen in the examples above).

This is useful for adding specific metadata to code elements that can be used later by reflection. Let’s see one more

example:

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]

public class AuthorAttribute : Attribute

{

 public string Name { get; }

 public AuthorAttribute(string name)

 {

 Name = name;

 }

}

[Author("John Smith")]

public class AttributeExample

{

Leaders.Tec.Br Volume 1, Number 5

3

https://leaders.tec.br

 [Author("Mary Johnson")]

 public void MethodA() { }

}

In this example, we created a custom attribute called AuthorAttribute and applied it to a class and a method. We can

use reflection to obtain these attributes at runtime:

Type type = typeof(AttributeExample);

object[] classAttributes = type.GetCustomAttributes(typeof(AuthorAttribute), false);

foreach (AuthorAttribute attribute in classAttributes)

{

 Console.WriteLine("Class: " + type.Name + " Author: " + attribute.Name);

}

MethodInfo method = type.GetMethod("MethodA");

object[] methodAttributes = method.GetCustomAttributes(typeof(AuthorAttribute), false);

foreach (AuthorAttribute attribute in methodAttributes)

{

 Console.WriteLine("Method: " + method.Name + " Author: " + attribute.Name);

}

Advanced Reflection

Advanced reflection allows not only obtaining information about types and members but also dynamically creating

instances of types, invoking methods, and accessing fields and properties, regardless of their visibility. Let’s see some

advanced examples:

Dynamic Instance Creation

We can dynamically create instances of types using reflection:

Type type = typeof(ReflectionExample);

object instance = Activator.CreateInstance(type);

This is useful in scenarios where the type to be instantiated is not known at compile time.

Dynamic Method Invocation

We can also invoke methods dynamically using reflection:

MethodInfo method = type.GetMethod("Method2");

method.Invoke(instance, new object[] { 42 });

This code invokes the Method2 method of the previously created instance, passing the value 42 as a parameter.

Accessing Private Fields and Properties

Reflection also allows accessing private fields and properties:

class PrivateExample

{

 private int secretNumber = 42;

}

Type privateType = typeof(PrivateExample);

object privateInstance = Activator.CreateInstance(privateType);

Leaders.Tec.Br Volume 1, Number 5

4

https://leaders.tec.br

FieldInfo privateField = privateType.GetField("secretNumber", BindingFlags.NonPublic |

BindingFlags.Instance);

int secretValue = (int)privateField.GetValue(privateInstance);

Console.WriteLine("Secret value: " + secretValue);

This code accesses the private field secretNumber of the PrivateExample class and displays its value in the console.

Conclusion

In summary, reflection and attributes play an essential role in the development of applications in C#, allowing the

creation of more flexible and dynamic code. By understanding how these resources work and how to use them,

programmers can explore the full potential of the language and develop more efficient and robust solutions.

References

For more information about reflection and attributes in C#, check out the following official references:

MICROSOFT. Microsoft's official documentation on reflection in C#. Available at: https://docs.microsoft.com/en-

us/dotnet/csharp/programming-guide/concepts/reflection. Accessed on: July 29, 2024.

MICROSOFT. Documentation on attributes in .NET. Available at: https://docs.microsoft.com/en-

us/dotnet/standard/attributes/. Accessed on: July 29, 2024.

MICROSOFT. Namespace System.Reflection. Available at: https://docs.microsoft.com/en-

us/dotnet/api/system.reflection. Accessed on: July 29, 2024.

MICROSOFT. Class System.Attribute. Available at: https://docs.microsoft.com/en-us/dotnet/api/system.attribute.

Accessed on: July 29, 2024.

Nagib is a University Professor and Tech Manager. He has a track record of achievements in technical and agile certifications,

including MCSD, MCSA, and PSM1. He holds a postgraduate degree in IT Management from SENAC and an MBA in Software

Technology from USP. Nagib has completed extension programs at MIT and the University of Chicago. Other achievements

include authoring a peer-reviewed article on chatbots, presented at the University of Barcelona.

Leaders.Tec.Br Volume 1, Number 5

5

https://leaders.tec.br

