
1

Leaders.Tec.Br Volume 1, Number 12

Performance analysis in Csharp with 

BenchmarkDotNet: Report and Evaluation

Nagib Sabbag Filho

Leaders.Tec.Br, 1(12), ISSN: 2966-263X, 2024.

e-mail: profnagib.filho@fiap.com.br

DOI: https://doi.org/10.5281/zenodo.13826811

PermaLink: https://leaders.tec.br/article/9e2ce1

Sep 23 2024

Abstract:

This article provides an introduction to Benchmarking in C# using the BenchmarkDotNet library, essential 

for performance analysis in software development. It covers everything from installation and configuration 

to creating benchmarks to measure the efficiency of algorithms and data structures. The text details the 

interpretation of results, report generation, and best practices to ensure accurate measurements.

Key words:

Performance analysis, C#, BenchmarkDotNet, detailed results, performance evaluation, performance 

metrics, code optimization, benchmark testing, algorithm comparison, profiling, execution time, memory 

usage, result accuracy, statistical analysis, benchmarking tools, software development, code efficiency.

Introduction to Benchmarking in C#

Performance analysis is a critical part of software development, especially in applications where efficiency and speed 

are essential. BenchmarkDotNet is a popular library in C# that allows developers to measure the performance of their 

applications accurately and reliably. With the increasing complexity of applications, it becomes vital to understand how 

different pieces of code behave under varied conditions. In this article, we will explore how to use BenchmarkDotNet 

to perform performance measurements, interpret the results, and apply the necessary improvements.

Benchmarking is essential to ensure that the code not only functions correctly but also executes its functions 

efficiently. Measuring performance can reveal bottlenecks, enabling developers to make necessary adjustments and 

improvements. Furthermore, good benchmarking can be a deciding factor in choosing algorithms and data structures, 

directly impacting the end-user experience.

Installation and Configuration of BenchmarkDotNet

To start using BenchmarkDotNet, you need to install it in your project. Installation can be easily done through NuGet. 

In the Visual Studio Package Manager Console, run the following command:

Install-Package BenchmarkDotNet

After installation, you can start creating your benchmarks. A simple example of a benchmark can be seen below:

 
using BenchmarkDotNet.Attributes; 
using BenchmarkDotNet.Running; 
 



2

Leaders.Tec.Br Volume 1, Number 12

public class MyBenchmarks 
{ 
    [Benchmark] 
    public int Sum() 
    { 
        int result = 0; 
        for (int i = 0; i < 1000; i++) 
        { 
            result += i; 
        } 
        return result; 
    } 
} 
 
public class Program 
{ 
    public static void Main(string[] args) 
    { 
        BenchmarkRunner.Run<MyBenchmarks>(); 
    } 
} 
    

In this example, we created a simple benchmark that measures the execution time of a summation operation. The 

Sum method is annotated with the [Benchmark] attribute, indicating that it should be measured. When executing this 

benchmark, BenchmarkDotNet will handle the necessary configuration and performance data collection.

It is important to remember that simple benchmarks may not show the full potential of BenchmarkDotNet. To truly take 

advantage of the library, you should consider more complex scenarios involving different algorithms and data 

structures. This not only helps understand performance under different conditions but also allows for more meaningful 

comparisons.

Interpreting the Results

After executing the benchmark, BenchmarkDotNet generates a detailed report with the results. The main data 

presented includes:

• Mean: The average execution time of the benchmark.

• Standard Deviation: The variability of the measurements.

• Median: The median value of the measurements.

This data helps analyze not only the average performance but also the consistency of the measurements. Let's 

consider a more complex example that involves comparing different sorting algorithms.

 
using BenchmarkDotNet.Attributes; 
using BenchmarkDotNet.Running; 
using System; 
using System.Linq; 
 
public class SortingBenchmarks 
{ 
    private int[] data; 



3

Leaders.Tec.Br Volume 1, Number 12

 
    [GlobalSetup] 
    public void Setup() 
    { 
        Random rand = new Random(); 
        data = Enumerable.Range(1, 10000).OrderBy(x => rand.Next()).ToArray(); 
    } 
 
    [Benchmark] 
    public int[] QuickSort() 
    { 
        return data.OrderBy(x => x).ToArray(); 
    } 
 
    [Benchmark] 
    public int[] BubbleSort() 
    { 
        int[] arr = (int[])data.Clone(); 
        for (int i = 0; i < arr.Length - 1; i++) 
        { 
            for (int j = 0; j < arr.Length - i - 1; j++) 
            { 
                if (arr[j] > arr[j + 1]) 
                { 
                    int temp = arr[j]; 
                    arr[j] = arr[j + 1]; 
                    arr[j + 1] = temp; 
                } 
            } 
        } 
        return arr; 
    } 
} 
 
public class Program 
{ 
    public static void Main(string[] args) 
    { 
        BenchmarkRunner.Run<SortingBenchmarks>(); 
    } 
} 
    

In the code above, we compare the performance of the quicksort algorithm and the bubble sort algorithm. The global 

setup generates a random dataset of 10,000 elements, which is used for both benchmarks. Analyzing the results will 

allow us to identify which algorithm is more efficient in terms of execution time.

Interpreting the results can reveal not only which algorithm is faster but also the efficiency in different scenarios. For 

example, on already sorted datasets, the bubble sort algorithm may perform adequately, while on random data, 

QuickSort will likely excel. It is here that careful analysis of the results becomes crucial.

Reports and Result Visualization

BenchmarkDotNet has rich reporting functionality, allowing results to be exported in different formats, including 

Markdown, HTML, and CSV. To generate HTML reports, you can use the following command in your terminal after 

executing the benchmark:



4

Leaders.Tec.Br Volume 1, Number 12

dotnet benchmark --exporters Html

This functionality is extremely useful for sharing results with your team or for documenting the performance of your 

code over time. An example of a generated report may include graphs and tables that show the performance of 

different implementations side by side.

Reports can be viewed directly in a browser, making it easy to analyze and present the results. Additionally, you can 

include comments and annotations that help contextualize the presented data, making reports a powerful tool for 

communication among team members and stakeholders.

Best Practices for Benchmarking

When conducting benchmarks, it is important to follow some best practices to ensure the accuracy of the results:

• Isolate tests: Ensure that measurements are not affected by other running processes. This can be done by running 

benchmarks in a controlled environment where only the application under test is running.

• Run multiple iterations: Run your benchmarks multiple times to obtain a reliable average. BenchmarkDotNet does 

this automatically, but it is important to understand this practice to ensure stable results.

• Avoid JIT optimizations: Use the [GlobalSetup] attribute to prepare the test state before measurements. This helps 

minimize the impact of Just-In-Time compilation on performance measurements.

• Document tests: Keep a detailed record of the tests performed, including the conditions under which they were 

executed and the results obtained. This documentation can be valuable for future performance analyses.

Integration with CI/CD

Integrating benchmarks into CI/CD pipelines can be an effective way to monitor performance over time. 

BenchmarkDotNet can be easily configured to run benchmarks automatically on each commit or pull request. This 

ensures that any performance degradation is detected quickly. To integrate it, you can add a step in your pipeline to 

execute the benchmarks and generate reports.

This practice not only helps maintain code quality but also provides quick feedback for developers, allowing fixes to be 

made before the code is merged. In addition, integrating benchmarks can help establish a performance culture within 

the development team, where code efficiency is prioritized.

Advanced Use Cases and Final Considerations

BenchmarkDotNet also supports more advanced use cases, such as:

• Memory testing, where you can measure the amount of memory allocated by your operations. This is especially 

useful in applications that deal with large volumes of data or need to operate in resource-constrained environments.

• Customizing benchmark environments, allowing you to simulate different execution conditions. You can, for 

example, adjust system load or simulate different types of hardware.

• Comparing different versions of your code, helping to identify which changes had a positive or negative impact on 

performance.

By using BenchmarkDotNet effectively, you can not only optimize your code but also ensure that improvements are 



5

Leaders.Tec.Br Volume 1, Number 12

sustainable over time. Performance analysis should be an ongoing part of the development lifecycle, and tools like 

BenchmarkDotNet are essential in this process.

References

• BENCHMARKDOTNET. BenchmarkDotNet. Available at: https://benchmarkdotnet.org/. Accessed in: 2024.

• MICROSOFT. Attributes. Available at: https://docs.microsoft.com/dotnet/csharp/programming-guide/inside-a-

program/attributes. Accessed in: 2024.

• MICROSOFT. Generic Collections. Available at: https://docs.microsoft.com/en-

us/dotnet/standard/collections/generic/. Accessed in: 2024.

Nagib is a University Professor and Tech Manager. He has a track record of achievements in technical and agile certifications, 

including MCSD, MCSA, and PSM1. He holds a postgraduate degree in IT Management from SENAC and an MBA in Software 

Technology from USP. Nagib has completed extension programs at MIT and the University of Chicago. Other achievements 

include authoring a peer-reviewed article on chatbots, which was presented at the University of Barcelona.


