Leaders.Tec.Br Volume 1, Number 7

Guidelines for the Efficient Use of the Bogus Library in
C# for Fake Data Generation

Nagib Sabbag Filho

Leaders.Tec.Br, 1(7), ISSN: 2966-263X, 2024.
e-mail: profnagib.filho@fiap.com.br

DOI: https://doi.org/10.5281/zenodo.13331693
PermalLink: https://leaders.tec.br/article/ae7330
Aug 19 2024

Abstract:

The Bogus library is widely used for generating fake data in software development projects, especially in
testing environments. This article presents a set of guidelines and best practices for the efficient use of
Bogus in C#. The goal is to assist developers in creating realistic and varied data, ensuring that software
tests are robust and representative. The article also explores some advanced features of the library.

Key words:

bogus, c#, bogus library, fake data generation, best practices, test data, mocking, creation of fictitious
objects, faker library, random data.

Introduction to the Bogus Library

The Bogus library is a powerful tool for generating fake data quickly and easily in C# applications. It is widely used in
testing, development, and prototyping, allowing developers to simulate realistic data without the need for a real
database. With a simple and highly customizable interface, Bogus is a popular choice among developers who need
reliable test data.

Installing the Library

To start using Bogus, you need to install it via NuGet. The easiest way to do this is through the Package Manager
Console in Visual Studio:

I nstal | - Package Bogus

You can also install it using the .NET CLI:

dot net add package Bogus

Generating Simple Data

After installation, you can start generating simple data. Here is a basic example of how to create a list of fake users:

usi ng Bogus;

var faker = new Faker("pt_BR");
var users = faker.Make(10, () => new
{

Leaders.Tec.Br Volume 1, Number 7

Nane = faker. Nane. Ful | Name(),
Email = faker.Internet. Email (),
Address = faker. Address. Ful | Address()

1)
foreach (var user in users)
{
Consol e. WiteLine($"{user.Nane}, {user.Email}, {user.Address}");
}

This code creates 10 users with fake names, emails, and addresses, using the Brazilian locale.
Generating Related Data

One of the most powerful features of Bogus is its ability to generate related data. For example, you can create a list of
products that belong to a list of categories:

var cat egoryFaker = new Faker ()
.RuleFor(c => c.Id, f => f.lndexFaker + 1)
.Rul eFor(c => c.Nane, f => f.Commerce. Departnent());

var product Faker = new Faker ()
.RuleFor(p => p.Id, f => f.lndexFaker + 1)
.Rul eFor(p => p. Nane, f => f. Comerce. Product Name())
.Rul eFor(p => p.Price, f => f.Conmerce. Price())
. Rul eFor(p => p.Categoryld, f => f.RandomInt(1, 10));

var categories = categoryFaker. Generate(10);
var products = product Faker. Generat e(50);

foreach (var product in products)

{
Consol e. WiteLine($"Product: {product.Nane}, Price: {product.Price}, Categoryld: {p

roduct . Categoryld}");
}

This example generates 10 categories and 50 products, where each product has a random category ID.
Advanced Data Customization

Bogus allows for extensive data customization. For example, if you want the generated emails to follow a specific
pattern, you can do the following:

var faker = new Faker("pt_BR');
var custonEnai | Faker = new Faker ()
. Rul eFor (u => u. Nane, f => f.Nane. Ful | Nane())
.RuleFor(u => u.Email, (f, u) => $"{u. Nane. ToLower (). Replace(" ", ".")}@xanple.com

")
var users = custonEmail Faker. Generat e(5);

foreach (var user in users)

{
}

Consol e. WiteLine($"{user.Nane}, {user.Email}");

Leaders.Tec.Br Volume 1, Number 7

In this example, the generated emails follow the pattern of the user's name in lowercase, replacing spaces with dots.

Best Practices for Using Bogus

Integrating Bogus into your automated tests is one of the best practices when using the library. This allows you to
have consistent and predictable data to validate the behavior of your application. Here is an example of how to use
Bogus in a unit test:

using Xunit;

public class UserServiceTests

{
private readonly UserService _userService;
public User ServiceTests()
{
_userService = new User Service();
}
[Fact]
public void Should Create User Wth Valid Data()
{
var faker = new Faker ()
. Rul eFor (u => u. Nane, f => f.Nane. Ful | Nane())
.RuleFor(u => u.Email, f => f.Internet.Email());
var user = faker.Generate();
var result = _userService. CreateUser (user);
Assert.NotNul |l (result);
Assert. Equal (user. Nanme, result. Nane);
Assert. Equal (user.Email, result.Email);
}
}

This example shows how you can create a test that validates the creation of a user with data generated by Bogus.

Advanced Features

Bogus offers a variety of advanced features that allow you to create fake data in even more sophisticated ways. Below
are some practical examples demonstrating how you can take advantage of these features in your projects.

1. Distribution-Based Data Generation

In some cases, it may be useful to generate data that follows a specific distribution, such as a normal distribution to
simulate natural events. Bogus allows this using the Randomizer class:

usi ng Bogus;

/1l Generates ages following a normal distribution (nmean 30, standard devi ation 5)
var ageFaker = new Faker().Random Int (18, 50). O Null(f => f.Random Float() < 0.1f);

var ages = new List();
for (int i =0; i < 100; i++)

Leaders.Tec.Br Volume 1, Number 7

{
ages. Add(ageFaker);
}
foreach (var age in ages)
{
Consol e. Wi t eLi ne(age);
}

This code generates 100 ages with a 10% chance of being null, following a distribution that simulates an adult
population.

2. Sequential Data Generation

Bogus allows you to generate data that follows a custom sequence. This is useful, for example, for creating unique
identifiers or serial numbers:

usi ng Bogus;
/1l Generates a sequential serial nunber in the fornat "ABC- 001", "ABC-002", etc.
var serial Faker = new Faker ()

. Rul eFor (s => s. Serial Number, f => $"ABC-{f.|ndexFaker + 1:000}");

var serials = serial Faker. Generate(10). Sel ect(s => s. Seri al Nunber);

foreach (var serial in serials)

{
}

Consol e. WitelLine(serial);

In this example, 10 serial numbers are generated in the format "ABC-001", "ABC-002", and so on.
3. Dependent Data Generation

In scenarios where the data of one field depends on the data of another field, Bogus can be configured to create this
relationship. See the example below:

usi ng Bogus;
var dependent Faker = new Faker ()
. Rul eFor (o => o. Ful | Name, f => f. Name. Ful | Nane())
. Rul eFor (o => o. UserNanme, (f, o) => o.Full Nanme. Repl ace(" ", "").ToLower());

var users = dependent Faker. Generate(5);

foreach (var user in users)

{
}

Consol e. WiteLine($"Full Nane: {user.Full Nane}, Usernane: {user.UserNane}");

Here, the UserName is generated based on the FullName, ensuring that the username is related to the person's full
name.

4. Nested Data Generation

Leaders.Tec.Br Volume 1, Number 7

In more complex systems, it may be necessary to generate nested objects, where one object contains other objects.
Bogus makes this task easier:

usi ng Bogus;

/1 Define the Address cl ass
public class Address

{
public string Street { get; set; }

public string Cty { get; set; }
}

/1 Define the User class with a nested Address
public class User

{
public string Full Nane { get; set; }

public Address Address { get; set; }
}

/] Cenerates a list of users with nested addresses
var user Faker = new Faker ()
. Rul eFor (u => u. Ful Il Name, f => f. Name. Ful | Nane())
. Rul eFor (u => u. Address, f => new Address

{
Street = f.Address. Street Address(),

Cty = f.Address.City()
1)

var users = user Faker. Generate(5);
foreach (var user in users)

Consol e. WiteLine($"Nane: {user.Full Nane}, Address: {user.Address.Street}, {user.Ad
dress.City}");

}

This example creates a list of users, each with a nested address, demonstrating how Bogus can be used to simulate
complex data structures.

5. Conditional Data Generation

Bogus also allows you to generate data based on specific conditions, which is useful for simulating different testing
scenarios:

usi ng Bogus;
/1l Generates an order status based on the total order anopunt
var order Faker = new Faker ()
. Rul eFor (o => o. Total Amount, f => f.Fi nance. Anount (100, 1000))
.Rul eFor(o => o. Status, (f, o) => o.Total Anbunt > 500 ? "Approved" : "Pending");

var orders = order Faker. Generate(5);

foreach (var order in orders)

{
}

Consol e. WiteLine($"Total: {order.Total Anount}, Status: {order.Status}");

Leaders.Tec.Br Volume 1, Number 7

In this example, the order status is set to "Approved" if the total amount is greater than 500; otherwise, it is "Pending".

Conclusion
The Bogus library is an essential tool for generating fake data in C#, offering flexibility and customization to meet
various development and testing needs. Its integration with automated testing and the ability to create realistic and

related data make it a valuable choice for developers looking to simulate real scenarios without the need for a real
database.

References
For more information about the Bogus library, refer to the official documentation and other resources available:

* BCHAVEZ. Official Bogus Repository on GitHub. Available at: https://github.com/bchavez/Bogus. Accessed on: July
29, 2024.

* BCHAVEZ. Bogus Documentation. Available at: https://github.com/bchavez/Bogus#readme. Accessed on: July 29,
2024.

* NUGET. Bogus NuGet Package. Available at: https://www.nuget.org/packages/Bogus/. Accessed on: July 29, 2024.

Nagib Filho is a University Professor and Tech Manager. He has a track record of achievements in technical and agile
certifications, including MCSD, MCSA, and PSM1. He has a postgraduate degree in IT Management from SENAC and an MBA in
Software Technology from USP. Nagib has completed extension programs at MIT and the University of Chicago. Other
accomplishments include being the author of a peer-reviewed article on chatbots, presented at the University of Barcelona.

