Leaders.Tec.Br

Combined Application of Flyweight and

Composite Patterns in Systems with Many
Objects

Nagib Sabbag Filho

Leaders.Tec.Br, 2(22), ISSN: 2966-263X, 2025.

e-mail: profnagib.filho@fiap.com.br

DOI: https://doi.org/10.5281/zenod0.15585065

PermalLink: https://leaders.tec.br/article/f38d34

Received: 29 May 2025 / Accepted: 31 May 2025 / Published online: 02 Jun 2025

Abstract:

This article explores the combined application of the Flyweight and Composite design patterns in
software development, highlighting their importance in optimizing performance and memory
management in complex systems. The Flyweight pattern minimizes memory usage by sharing
objects with common states, while the Composite pattern facilitates the manipulation of
hierarchical structures.

Key words:

Flyweight,Composite,design patterns,systems,many objects,memory optimization,hierarchical structure,object

reuse,efficiency,abstraction,object management,performance,scalable software,structural patterns,software design,system
architecture.

Introduction to Design Patterns

In software development, efficiency and resource management are crucial, especially when dealing with systems that
present a large number of objects. In this context, choosing appropriate design patterns can make a significant
difference in the performance and maintainability of the system. Among the structural patterns, which focus on how
classes and objects are composed, the Flyweight and Composite patterns stand out, both offering effective solutions
to these challenges (SABBAG FILHO, 2024). The Flyweight pattern is used to minimize memory usage by sharing
objects, while the Composite pattern allows for treating individual objects and compositions of objects uniformly.

This article explores in detail the combined application of these two patterns, providing practical examples and
explanations on how they can be used to optimize the performance of complex systems. The integration of the
Flyweight and Composite patterns is especially beneficial in scenarios where the creation of many objects is necessary,
such as in games, graphic applications, and data management systems.

The Flyweight Pattern

The Flyweight pattern is a structural pattern that aims to optimize memory usage by sharing objects that have common
state, reducing the overhead of redundant instances (REFACTORING GURU, 2025). It is particularly useful in systems

Leaders.Tec.Br

where many objects need to be created and maintained, especially where many of these objects share common
characteristics. The Flyweight allows you to create a large number of object instances, saving memory by sharing the
data that remains constant (SARCAR, 2022).

A classic example of the Flyweight pattern is the representation of characters in a text editor. Instead of creating a new
instance for each letter, we can have shared instances for each letter type. This approach not only saves memory but
also improves performance by minimizing the number of objects on the heap.

System;
System.Collections.Generic;

ICharacter
Display(int x, int y);
Character : ICharacter

_letter;
Character(letter)

_letter = letter;
Display(int x, inty)

Console WriteLine($"Displaying letter '{_letter}' at position ({x}, {y})");

CharacterFactory

Dictionary< , ICharacter> _characters = Dictionary< , ICharacter>();
ICharacter GetCharacter(letter)

(!_characters.ContainsKey(letter))
_characters|letter] = Character(letter);

_characters|letter];

Program
Main()

factory = CharacterFactory();
text = "Hello, World!";

(inti=0;i< text.Length; i++)

character = factory.GetCharacter(text[i]);
character.Display(i * 10, 0);

The Composite Pattern

The Composite pattern is a structural pattern that allows composing objects into tree structures to represent part-
whole hierarchies. It enables clients to treat individual objects and compositions of objects uniformly, simplifying the
manipulation of complex structures (MANCHANA, 2019). This uniformity is especially useful in systems where it is
necessary to perform operations on groups of objects that have a hierarchical relationship.

Leaders.Tec.Br

A practical example of the Composite pattern can be found in file management systems, where directories can contain
files and other directories. This allows the structure to be treated as a single object, simplifying operations such as

displaying, removing, or adding elements.

System;
System.Collections.Generic;

Component

Display(int depth);

File : Component

_name;
File(name)

_name = name;
Display(int depth)

Console.WriteLine(("', depth) + _name);

Directory : Component
_name;
List<Component> _components = List<Component>();
Directory(name)
_name = name;
Add(Component component)
_components.Add(component);

Display(int depth)

Console.WriteLine(("', depth) + _name);
(var component in _components)

{
}

component.Display(depth + 2);

Program
Main()

root = Directory("Root");
folderl = Directory("Folder1");
folder2 = Directory("Folder2");
root.Add(folder1);
root.Add(folder2);
folder1.Add(File("File1.txt"));
folder1.Add(File("File2.txt"));
folder2.Add(File("File3.txt"));
root.Display(1);

Leaders.Tec.Br

Integration of the Flyweight and Composite Patterns

The combination of the Flyweight and Composite patterns offers a powerful solution for systems that deal with large
quantities of objects that have both a shared state and a hierarchical structure. A practical example can be found in
games, where multiple objects of the same type (such as enemies or items) must be managed in a scene but also

Flyweight Factory E Flyweight E Composite E
{reuses Enemy instances) i (shared object) i (contains multiple IEnemy) i
EnemyFactory Enemy Level
-_enemies: Dictionary=string, -_type: string -_enemies: List=IEnemy=
IEnemy=
+Enemy(type: string) +AddEnemy(|Enemy)
+GetEnemy(type: string) : - IEnemy +Attack() +Attack()
I implement i
I
returns * :I
| =zinterface>>
|[Enemy contains

+Attack()

By integrating these patterns, we can not only reduce memory usage by sharing instances of common objects but also
organize these objects into a hierarchical structure that facilitates manipulation and interaction among them. This
approach is especially useful in scenarios where performance is critical, such as in real-time games or complex
graphical applications. Below is an example of its application:

System;
System.Collections.Generic;
IEnemy

Attack();

Enemy : I[Enemy

_type;
Enemy(type)

_type = type;

Attack()

Console.WriteLine($"Enemy of type {_type} attacking!");

EnemyFactory

Dictionary< , IEnemy> _enemies = Dictionary< , IEnemy>();
IEnemy GetEnemy(type)

('_enemies.ContainsKey(type))

_enemies[type] = Enemy(type);

Leaders.Tec.Br

_enemies[type];

Level

List<IEnemy> _enemies = List<IEnemy>();
AddEnemy(IEnemy enemy)

_enemies.Add(enemy);

Attack()

(var enemy in _enemies)
{
enemy.Attack();
}

Program
Main()

factory = EnemyFactory();

levell = Level();
level1.AddEnemy(factory.GetEnemy("Orc"));
level1.AddEnemy(factory.GetEnemy("Orc"));
level1.AddEnemy(factory.GetEnemy("Goblin"));
level1.Attack();

Advantages of the Combined Approach

The application of the Flyweight and Composite patterns together results in an architecture that significantly reduces
memory usage while maintaining a clear and easily modifiable structure. This approach is especially advantageous in
gaming scenarios, simulations, and complex graphics systems, where performance and organization are essential.
Additionally, by allowing the creation of a hierarchy of objects, it facilitates the extension and customization of the
system, enabling new types of objects to be added without altering existing behavior.

Another important point is code maintenance. The use of these patterns can lead to a cleaner design, where
responsibilities are well defined, making it easier to identify problems and make changes. This is crucial in long-term
projects, where the adaptation and evolution of software are inevitable.

Final Considerations

The combined use of the Flyweight and Composite patterns is an effective strategy for dealing with systems that have
many objects. By allowing the sharing of common states and the creation of object hierarchies, these patterns provide
a robust and efficient solution to performance and memory management challenges. Understanding and correctly
applying these patterns can lead to cleaner, more efficient, and scalable software design. In a world where the
complexity of software systems continues to grow, adopting effective design practices like these becomes increasingly
important.

References

e SABBAG FILHO, Nagib. Comparative Analysis of Patterns: Distinctions and Applications of Behavioral, Creational,
and Structural Patterns. Leaders Tec, vol. 1, no. 11, 2024.

o SARCAR, Vaskaran. Flyweight Pattern. In: Java Design Patterns: A Practical Experience with Real-World Examples.
Berkeley, CA: Apress, 2022. p. 263-282.

Leaders.Tec.Br Volume 2, Number 22
e REFACTORING GURU. Flyweight. Available at: https://refactoring.guru/design-patterns/flyweight. Accessed on: May
28, 2025.

¢ MANCHANA, Ramakrishna. Structural Design Patterns: Composing Efficient and Scalable Software Architectures.
International Journal of Scientific Research and Engineering Trends, vol. 5, pp. 1483-1491, 2019.

Nagib is a University Professor and Lead Systems Architect, with a career marked by several achievements in technical and
agile certifications, including GitHub Copilot and PSM1. With two Lato Sensu postgraduate degrees (SENAC and
Mackenzie) and an MBA in Software Technology from USP, Nagib has also participated in extension programs at MIT and
University of Chicago. Among other achievements, he is the author of a peer-reviewed article on chatbots, presented in
person at the University of Barcelona. Nagib also has a strong presence in the technical community, with over 40 technical
articles published in less than a year, including 8 articles on iMasters. He was a speaker in the "Architecture .NET" track at
TDC Sao Paulo 2024 and is confirmed to speak in the "Solution Architecture" track at TDC Floripa 2025.

